高二物理基础知识点总结
功(W)
功是表示力作用一段位移(空间积累)效果的物理量。
要深刻理解功的概念:
①如果物体在力的方向上发生了位移,就说这个力对物体做了功。因此,凡谈到做功,一定要明确指出是哪个力对哪个物体做了功。
②做功出必须具有两个必要的因素;力和物体在力的方向上发生了位移。因此,如果力在物体发生的那段位移里做了功,则物体在发生那段位移的过程里始终受到该力的作用,力消失之时即停止做功之时。
③力做功是一个物理过程,做功的多少反映了在这物理过程中能量变化的多少。
④功可用公式W=Fscosα计算。当0<α<90°时,力做正功,当α=90°时,力不做功,当90°<α<180°时,力做负功(或说成物体克服该力做正功)。
⑤功是标量,但功有正负。功的正负仅表示力在使物体移的过程中起了动力作用还是阻力作用。
⑥和外力对物体所做的功等于各个外力对物体做功的代数和。
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻(Ω/m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)
电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+
电流关系I总=I1=I2=I3I并=I1+I2+I3+
电压关系U总=U1+U2+U3+U总=U1=U2=U3
功率分配P总=P1+P2+P3+P总=P1+P2+P3+
10.欧姆表测电阻
(1)电路组成(2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻
电流表内接法:电压表示数:U=UR+UA
电流表外接法:电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真;
Rx的测量值=U/I=UR/(IR+IV)=RVRx(RV+R)
选用电路条件Rx>RA[或Rx>(RARV)1/2]
选用电路条件Rx
12.滑动变阻器在电路中的限流接法与分压接法
限流接法:电压调节范围小,电路简单,功耗小
便于调节电压的选择条件Rp>Rx
电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp
注:
(1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;
(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;
(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;
(5)当外电路电阻等于电源电阻时,电源输出功率,此时的输出功率为E2/(2r);
(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。
电场力做正功,电势能减小,电场力做负功,电势能增大,正电荷在电场中受力方向与场强方向一致,所以正电荷沿场强方向,电势能减小,负电荷在电场中受力方向与场强相反,所以负电荷沿场强方向,电势能增大,但电势都是沿场强方向减小。
1、原因
电势能,电场力,功的关系与重力势能,重力,功的关系很相似。
E=mgh,重力做正功,重力势能减小。
电势能的原因就是电场力有做功的能力,凡是势能规律几乎都是如此,电场力正做功,电势能减小,电场力负做功,电势能增大,在做正功的过程中,电势能通过做功的形式把能量转化为其他形式的能,因而电势能减小。
静电力做的正功功=电势能的减小量,静电力做的负功=电势能的增加量
2、判断电场力做功的方法
(1)看电场力与带电粒子的位移方向夹角,小于90度为正功,大于90度为负功;
(2)看电场力与带电粒子的速度方向夹角,小于90度为正功,大于90度为负功;
(3)看电势能的变化,电势能增加,电场力做负功,电势能减小,电场力做正功。
1.若三个力大小相等方向互成120°,则其合力为零。
2.几个互不平行的力作用在物体上,使物体处于平衡状态,则其中一部分力的合力必与其余部分力的合力等大反向。
3.在匀变速直线运动中,任意两个连续相等的时间内的位移之差都相等,即Δx=aT2(可判断物体是否做匀变速直线运动),推广:xm-xn=(m-n) aT2。
4.在匀变速直线运动中,任意过程的平均速度等于该过程中点时刻的瞬时速度。即vt/2=v平均。
5.对于初速度为零的匀加速直线运动
(1)T末、2T末、3T末、…的瞬时速度之比为:
v1:v2:v3:…:vn=1:2:3:…:n。
(2)T内、2T内、3T内、…的位移之比为:
x1:x2:x3:…:xn=12:22:32:…:n2。
(3)第一个T内、第二个T内、第三个T内、…的位移之比为:
xⅠ:xⅡ:xⅢ:…:xn=1:3:5:…:(2n-1)。
(4)通过连续相等的位移所用的时间之比:
t1:t2:t3:…:tn=1:(21/2-1):(31/2-21/2):…:[n1/2-(n-1)1/2]。
6.物体做匀减速直线运动,末速度为零时,可以等效为初速度为零的反向的匀加速直线运动。
7.对于加速度恒定的匀减速直线运动对应的正向过程和反向过程的时间相等,对应的速度大小相等(如竖直上抛运动)
8.质量是惯性大小的唯一量度。惯性的大小与物体是否运动和怎样运动无关,与物体是否受力和怎样受力无关,惯性大小表现为改变物理运动状态的难易程度。
9.做平抛或类平抛运动的物体在任意相等的时间内速度的变化都相等,方向与加速度方向一致(即Δv=at)。
10.做平抛或类平抛运动的物体,末速度的反向延长线过水平位移的中点。
11.物体做匀速圆周运动的条件是合外力大小恒定且方向始终指向圆心,或与速度方向始终垂直。
12.做匀速圆周运动的物体,在所受到的合外力突然消失时,物体将沿圆周的切线方向飞出做匀速直线运动;在所提供的向心力大于所需要的向心力时,物体将做向心运动;在所提供的向心力小于所需要的向心力时,物体将做离心运动。
13.开普勒第一定律的内容是所有的行星围绕太阳运动的轨道都是椭圆,太阳在椭圆轨道的一个焦点上。开普勒第三定律的内容是所有行星的半长轴的三次方跟公转周期的平方的比值都相等,即R3/ T2=k。
14.地球质量为M,半径为R,万有引力常量为G,地球表面的重力加速度为g,则其间存在的一个常用的关系是。(类比其他星球也适用)
15.第一宇宙速度(近地卫星的环绕速度)的表达式v1=(GM/R)1/2=(gR) 1/2,大小为7.9m/s,它是发射卫星的最小速度,也是地球卫星的最大环绕速度。随着卫星的高度h的增加,v减小,ω减小,a减小,T增加。
16.第二宇宙速度:v2=11.2km/s,这是使物体脱离地球引力束缚的最小发射速度。
17.第三宇宙速度:v3=16.7km/s,这是使物体脱离太阳引力束缚的最小发射速度。
18.对于太空中的双星,其轨道半径与自身的质量成反比,其环绕速度与自身的质量成反比。
19.做功的过程就是能量转化的过程,做了多少功,就表示有多少能量发生了转化,所以说功是能量转化的量度,以此解题就是利用功能关系解题。
20.滑动摩擦力,空气阻力等做的功等于力和路程的乘积。
21.静摩擦力做功的特点:
(1)静摩擦力可以做正功,可以做负功也可以不做功。
(2)在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力只起到传递机械能的作用),而没有机械能与其他能量形式的相互转化。
(3)相互摩擦的系统内,一对静摩擦力所做的功的总和等于零。
22.滑动摩擦力做功的特点:
(1)滑动摩擦力可以对物体做正功,可以做负功也可以不做功。
(2)一对滑动摩擦力做功的过程中,能量的分配有两个方面:一是相互摩擦的物体之间的机械能的转移;二是系统机械能转化为内能;转化为内能的量等于滑动摩擦力与相对路程的乘积,即Q=f. Δs相对。
23.若一条直线上有三个点电荷,因相互作用而平衡,其电性及电荷量的定性分布为“两同夹一异,两大夹一小”。
24.匀强电场中,任意两点连线中点的电势等于这两点的电势的平均值。在任意方向上电势差与距离成正比。
25.正电荷在电势越高的地方,电势能越大,负电荷在电势越高的地方,电势能越小。
26.电容器充电后和电源断开,仅改变板间的距离时,场强不变。
27.两电流相互平行时无转动趋势,同向电流相互吸引,异向电流相互排斥;两电流不平行时,有转动到相互平行且电流方向相同的趋势。
28.带电粒子在磁场中仅受洛伦兹力时做圆周运动的周期与粒子的速率、半径无关,仅与粒子的质量、电荷和磁感应强度有关。
29.带电粒子在有界磁场中做圆周运动:
(1)速度偏转角等于扫过的圆心角。
(2)几个出射方向:
①粒子从某一直线边界射入磁场后又从该边界飞出时,速度与边界的夹角相等。
②在圆形磁场区域内,沿径向射入的粒子,必沿径向射出——对称性。
③刚好穿出磁场边界的条件是带电粒子在磁场中的轨迹与边界相切。
(3)运动的时间:轨迹对应的圆心角越大,带电粒子在磁场中的运动时间就越长,与粒子速度的大小无关。[t=θT/(2π)= θm/(qB)]
30.速度选择器模型:带电粒子以速度v射入正交的电场和磁场区域时,当电场力和磁场力方向相反且满足v=E/B时,带电粒子做匀速直线运动(被选择)与带电粒子的带电荷量大小、正负无关,但改变v、B、E中的任意一个量时,粒子将发生偏转。
31.回旋加速器
(1)为了使粒子在加速器中不断被加速,加速电场的周期必须等于回旋周期。
(2)粒子做匀速圆周运动的最大半径等于D形盒的半径。
(3)在粒子的质量、电荷量确定的情况下,粒子所能达到的最大动能只与D形盒的半径和磁感应强度有关,与加速器的电压无关(电压只决定了回旋次数)。
(4)将带电粒子在两盒之间的运动首尾相连起来是一个初速度为零的匀加速直线运动,带电粒子每经过电场加速一次,回旋半径就增大一次,故各次半径之比为:
1:21/2:31/2:…:n1/2。
32.在没有外界轨道约束的情况下,带电粒子在复合场中三个场力(电场力、洛伦磁力、重力)作用下的直线运动必为匀速直线运动;若为匀速圆周运动则必有电场力和重力等大、反向。
33.在闭合电路中,当外电路的任何一个电阻增大(或减小)时,电路的总电阻一定增大(或减小)。
34.滑动变阻器分压电路中,总电阻变化情况与滑动变阻器串联段电阻变化情况相同。
35.若两并联支路的电阻之和保持不变,则当两支路电阻相等时,并联总电阻最大;当两支路电阻相差最大时,并联总电阻最小。
36.电源的输出功率随外电阻变化,当内外电阻相等时,电源的输出功率最大,且最大值Pm=E2/(4r)。
37.导体棒围绕棒的一端在垂直磁场的平面内做匀速圆周运动而切割磁感线产生的电动势E=BL2ω/2。
38.对由n匝线圈构成的闭合电路,由于磁通量变化而通过导体某一横截面的电荷量q=nΔΦ/R。
39.在变加速运动中,当物体的加速度为零时,物体的速度达到最大或最小——常用于导体棒的动态分析。
40.安培力做多少正功,就有多少电能转化为其他形式的能量;安培力做多少负功,就有多少其他形式的能量转化为电能,这些电能在通过纯电阻电路时,又会通过电流做功将电能转化为内能。
41.在Φ-t图象(或回路面积不变时的B-t图象)中,图线的斜率既可以反映电动势的大小,又可以反映电源的正负极。
42.交流电的产生:计算感应电动势的最大值用Em=nBSω;计算某一段时间Δt内的感应电动势的平均值用E平均=nΔΦ/Δt,而E平均不等于对应时间段内初、末位置的算术平均值。即E平均≠E1+E2/2,注意不要漏掉n。
43.只有正弦交流电,物理量的最大值和有效值才存在21/2倍的关系。对于其他的交流电,需根据电流的热效应来确定有效值。
44.回复力与加速度的大小始终与位移的大小成正比,方向总是与位移方向相反,始终指向平衡位置。
45.做简谐运动的物体的振动是变速直线运动,因此在一个周期内,物体运动的路程是4A,半个周期内,物体的路程是2A,但在四分之一个周期内运动的路程不一定是A。
46.每一个质点的起振方向都与波源的起振方向相同。
47.对于干涉现象
(1)加强区始终加强,减弱区始终减弱。
(2)加强区的振幅A=A1+A2,减弱区的振幅A=|A1-A2|。
48.相距半波长的奇数倍的两质点,振动情况完全相反;相距半波长的偶数倍的两质点,振动情况完全相同。
49.同一质点,经过Δt =nT(n=0、1、2…),振动状态完全相同,经过Δt =nT+T/2(n=0、1、2…),振动状态完全相反。
50.小孔成像是倒立的实像,像的大小由光屏到小孔的距离而定。
51.根据反射定律,平面镜转过一个微小的角度α,法线也随之转动α,反射光则转过2α。
52.光由真空射向三棱镜后,光线一定向棱镜的底面偏折,折射率越大,偏折程度越大。通过三棱镜看物体,看到的是物体的虚像,而且虚像向棱镜的顶角偏移,如果把棱镜放在光密介质中,情况则相反。
53.光线通过平行玻璃砖后,不改变光线行进的方向及光束的性质,但会使光线发生侧移,侧移量的大小跟入射角、折射率和玻璃砖的厚度有关。
54.光的颜色是由光的频率决定的,光在介质中的折射率也与光的频率有关,频率越大的光折射率越大。
55.用单色光做双缝干涉实验时,当两列光波到达某点的路程差为半波长的偶数倍时,该处的光互相加强,出现亮条纹;当到达某点的路程差为半波长的奇数倍时,该处的光互相减弱,出现暗条纹。
56.电磁波在介质中的传播速度跟介质和频率有关;而机械波在介质中的传播速度只跟介质有关。
57.质子和中子统称为核子,相邻的任何核子间都存着核力,核力为短程力。距离较远时,核力为零。
58.半衰期的大小由放射性元素的原子核内部本身的因素决定,跟物体所处的物理状态或化学状态无关。
59.使原子发生能级跃迁时,入射的若是光子,光子的能量必须等于两个定态的能级差或超过电离能;入射的若是电子,电子的能量必须大于或等于两个定态的能级差。
60.原子在某一定态下的能量值为En=E1/n2,该能量包括电子绕核运动的动能和电子与原子核组成的系统的电势能。
61.动量的变化量的方向与速度变化量的方向相同,与合外力的冲量方向相同,在合外力恒定的情况下,物体动量的变化量方向与物体所受合外力的方向相同,与物体加速度的方向相同。
62. F合Δt=ΔP→F合=ΔP/Δt这是牛顿第二定律的另一种表示形式,表述为物体所受的合外力等于物体动量的变化率。
63.碰撞问题遵循三个原则:
①总动量守恒;
②总动能不增加;
③合理性(保证碰撞的发生,又保证碰撞后不再发生碰撞)。
64.完全非弹性碰撞(碰撞后连成一个整体)中,动量守恒,机械能不守恒,且机械能损失最大。
65.爆炸的特点是持续时间短,内力远大于外力,系统的动量守恒
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍。
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。
力是物体间的相互作用
1.力的国际单位是牛顿,用N表示;
2.力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;
3.力的示意图:用一个带箭头的线段表示力的方向;
4.力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;
重力:由于地球对物体的吸引而使物体受到的力;
a.重力不是万有引力而是万有引力的一个分力;
b.重力的方向总是竖直向下的(垂直于水平面向下)
c.测量重力的仪器是弹簧秤;
d.重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心;
弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力;
a.产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力;
b.弹力包括:支持力、压力、推力、拉力等等;
c.支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向;
d.在弹性限度内弹力跟形变量成正比;F=Kx
摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力;
a.产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力;
b.摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;
c.滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力;
d.静摩擦力的大小等于使物体发生相对运动趋势的外力;
合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力;
a.合力与分力的作用效果相同;
b.合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力;
c.合力大于或等于二分力之差,小于或等于二分力之和;
d.分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法);
矢量
矢量:既有大小又有方向的物理量(如:力、位移、速度、加速度、动量、冲量)
标量:只有大小没有方向的物力量(如:时间、速率、功、功率、路程、电流、磁通量、能量)
直线运动
物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零;
(1)在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向;
(2)在N个共点力作用下物体处于`平衡状态,则任意第N个力与(N-1)个力的合力等大反向;
(3)处于平衡状态的物体在任意两个相互垂直方向的合力为零;
机械运动
机械运动:一物体相对其它物体的位置变化。
1.参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止);
2.质点:只考虑物体的质量、不考虑其大小、形状的物体;
(1)质点是一理想化模型;
(2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时;
如:研究地球绕太阳运动,火车从北京到上海;
3.时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段;
例:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔;
4.位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线;
(1)位移为零、路程不一定为零;路程为零,位移一定为零;
(2)只有当质点作单向直线运动时,质点的位移才等于路程;
(3)位移的国际单位是米,用m表示
5.位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移;
(1)匀速直线运动的位移图像是一条与横轴平行的直线;
(2)匀变速直线运动的位移图像是一条倾斜直线;
(3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大;
6.速度是表示质点运动快慢的物理量
(1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度;
(2)速率只表示速度的大小,是标量;
7.加速度:是描述物体速度变化快慢的物理量;
(1)加速度的定义式:a=vt-v0/t
(2)加速度的大小与物体速度大小无关;
(3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零;
(4)速度改变等于末速减初速。加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关;
(5)加速度是矢量,加速度的方向和速度变化方向相同;
(6)加速度的国际单位是m/s2
匀变速直线运动
1.速度:匀变速直线运动中速度和时间的关系:vt=v0+at
注:一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值;
(1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均;
(2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均;
2.位移:匀变速直线运动位移和时间的关系:s=v0t+1/2at2
注意:当物体作加速运动时a取正值,当物体作减速运动时a取负值;
3.推论:2as=vt2-v02
4.作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植:s2-s1=aT2
5.初速度为零的匀加速直线运动:前1秒,前2秒,……位移和时间的关系是:位移之比等于时间的平方比;第1秒、第2秒……的位移与时间的关系是:位移之比等于奇数比;
自由落体运动
只在重力作用下从高处静止下落的物体所作的运动。
1.位移公式:h=1/2gt2
2.速度公式:vt=gt
3.推论:2gh=vt2
牛顿定律
1.牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。
a.只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态;
b.力是该变物体速度的原因;
c.力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)
d力是产生加速度的原因;
2.惯性:物体保持匀速直线运动或静止状态的性质叫惯性。
a.一切物体都有惯性;
b.惯性的大小由物体的质量决定;
c.惯性是描述物体运动状态改变难易的物理量;
3.牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。
a.数学表达式:a=F合/m;
b.加速度随力的产生而产生、变化而变化、消失而消失;
c.当物体所受力的方向和运动方向一致时,物体加速;当物体所受力的方向和运动方向相反时,物体减速。
d.力的单位牛顿的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1N;
4.牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的;
a.作用力和反作用力同时产生、同时变化、同时消失;
b.作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上;
曲线运动·万有引力
曲线运动
质点的运动轨迹是曲线的运动
1.曲线运动中速度的方向在时刻改变,质点在某一点(或某一时刻)的速度方向是曲线在这一点的切线方向
2.质点作曲线运动的条件:质点所受合外力的方向与其运动方向不在同一条直线上;且轨迹向其受力方向偏折;
3.曲线运动的特点
曲线运动一定是变速运动;
曲线运动的加速度(合外力)与其速度方向不在同一条直线上;
4.力的作用
力的方向与运动方向一致时,力改变速度的大小;
力的方向与运动方向垂直时,力改变速度的方向;
力的方向与速度方向既不垂直,又不平行时,力既搞变速度大小又改变速度的方向;
运动的合成与分解
1.判断和运动的方法:物体实际所作的运动是合运动
2.合运动与分运动的等时性:合运动与各分运动所用时间始终相等;
3.合位移和分位移,合速度和分速度,和加速度与分加速度均遵守平行四边形定则;
平抛运动
被水平抛出的物体在在重力作用下所作的运动叫平抛运动。
1.平抛运动的实质:物体在水平方向上作匀速直线运动,在竖直方向上作自由落体运动的合运动;
2.水平方向上的匀速直线运动和竖直方向上的自由落体运动具有等时性;
3.求解方法:分别研究水平方向和竖直方向上的二分运动,在用平行四边形定则求和运动;
匀速圆周运动
质点沿圆周运动,如果在任何相等的时间里通过的圆弧相等,这种运动就叫做匀速圆周运动。
1.线速度的大小等于弧长除以时间:v=s/t,线速度方向就是该点的切线方向;
2.角速度的大小等于质点转过的角度除以所用时间:ω=Φ/t
3.角速度、线速度、周期、频率间的关系:
(1)v=2πr/T;
(2)ω=2π/T;
(3)V=ωr;
(4)f=1/T;
4.向心力:
(1)定义:做匀速圆周运动的物体受到的沿半径指向圆心的力,这个力叫向心力。
(2)方向:总是指向圆心,与速度方向垂直。
(3)特点:①只改变速度方向,不改变速度大小
②是根据作用效果命名的。
(4)计算公式:F向=mv2/r=mω2r
5.向心加速度:a向=v2/r=ω2r
开普勒三定律
1.开普勒第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上;
说明:在中学间段,若无特殊说明,一般都把行星的运动轨迹认为是圆;
2.开普勒第三定律:所有行星与太阳的连线在相同的时间内扫过的面积相等;
3.开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等;
公式:R3/T2=K;
说明:
(1)R表示轨道的半长轴,T表示公转周期,K是常数,其大小之与太阳有关;
(2)当把行星的轨迹视为圆时,R表示愿的半径;
(3)该公式亦适用与其它天体,如绕地球运动的卫星;
万有引力定律
自然界中任何两个物体都是互相吸引的,引力的大小跟这两个物体的质量成正比,跟它们的距离的二次方成反比。
1.计算公式
F:两个物体之间的引力
G:万有引力常量
M1:物体1的质量
M2:物体2的质量
R:两个物体之间的距离
依照国际单位制,F的单位为牛顿(N),m1和m2的单位为千克(kg),r的单位为米(m),常数G近似地等于
6.67×10^-11N·m^2/kg^2(牛顿平方米每二次方千克)。
2.解决天体运动问题的思路:
(1)应用万有引力等于向心力;应用匀速圆周运动的线速度、周期公式;
(2)应用在地球表面的物体万有引力等于重力;
(3)如果要求密度,则用:m=ρV,V=4πR3/3
机械能
功
功等于力和物体沿力的方向的位移的乘积;
1.计算公式:w=Fs;
2.推论:w=Fscosθ,θ为力和位移间的夹角;
3.功是标量,但有正、负之分,力和位移间的夹角为锐角时,力作正功,力与位移间的夹角是钝角时,力作负功;
功率
功率是表示物体做功快慢的物理量。
1.求平均功率:P=W/t;
2.求瞬时功率:p=Fv,当v是平均速度时,可求平均功率;
3.功、功率是标量;
功和能之间的关系
功是能的转换量度;做功的过程就是能量转换的过程,做了多少功,就有多少能发生了转化;
动能定理
合外力做的功等于物体动能的变化。
1.数学表达式:w合=mvt2/2-mv02/2
2.适用范围:既可求恒力的功亦可求变力的功;
3.应用动能定理解题的优点:只考虑物体的初、末态,不管其中间的运动过程;
4.应用动能定理解题的步骤:
(1)对物体进行正确的受力分析,求出合外力及其做的功;
(2)确定物体的初态和末态,表示出初、末态的动能;
(3)应用动能定理建立方程、求解
重力势能
物体的重力势能等于物体的重量和它的速度的乘积。
1.重力势能用EP来表示;
2.重力势能的数学表达式:EP=mgh;
3.重力势能是标量,其国际单位是焦耳;
4.重力势能具有相对性:其大小和所选参考系有关;
5.重力做功与重力势能间的关系
(1)物体被举高,重力做负功,重力势能增加;
(2)物体下落,重力做正功,重力势能减小;
(3)重力做的功只与物体初、末为置的高度有关,与物体运动的路径无关
机械能守恒定律
在只有重力(或弹簧弹力做功)的情形下,物体的动能和势能(重力势能、弹簧的弹性势能)发生相互转化,但机械能的总量保持不变。
1.机械能守恒定律的适用条件:只有重力或弹簧弹力做功。
2.机械能守恒定律的数学表达式:
3.在只有重力或弹簧弹力做功时,物体的机械能处处相等;
4.应用机械能守恒定律的解题思路
(1)确定研究对象,和研究过程;
(2)分析研究对象在研究过程中的受力,判断是否遵受机械能守恒定律;
(3)恰当选择参考平面,表示出初、末状态的机械能;
(4)应用机械能守恒定律,立方程、求解;
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)
电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+
电流关系I总=I1=I2=I3I并=I1+I2+I3+
电压关系U总=U1+U2+U3+U总=U1=U2=U3
功率分配P总=P1+P2+P3+P总=P1+P2+P3+
10.欧姆表测电阻
(1)电路组成(2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡.
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零.
11.伏安法测电阻
电流表内接法:电流表外接法:
电压表示数:U=UR+UA电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)>RA[或Rx>(RARV)1/2]选用电路条件Rx
一、电荷量和点电荷
1、电荷量:物体所带电荷的多少,叫做电荷量,简称电量。单位为库仑,简称库,用符号C表示。
2、点电荷:带电体的形状、大小及电荷量分布对相互作用力的影响可以忽略不计,在这种情况下,我们就可以把带电体简化为一个点,并称之为点电荷。
二、电荷量的检验
1、检测仪器:验电器
2、了解验电器的工作原理
三、库仑定律
1、内容:在真空中两个静止的点电荷间相互作用的库仑力跟它们电荷量的乘积成正比,跟它们距离的平方成反比,作用力的方向在它们的连线上。
2、大小:方向在两个电电荷的连线上,同性相斥,异性相吸。
3、公式中k为静电力常量,
4、成立条件
①真空中(空气中也近似成立)
②点电荷